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Abstract. The Karush-Kuhn-Tucker (KKT) system of the variational inequality problem
over a set defined by inequality and equality constraints can be reformulated as a system of
semismooth equations via an nonlinear complementarity problem (NCP) function. We give a
sufficient condition for boundedness of the level sets of the norm function of this system of
semismooth equations when the NCP function is metrically equivalent to the minimum func-
tion; and a sufficient and necessary condition when the NCP function is the minimum func-
tion. Nonsingularity properties identified by Facchinei, Fischer and Kanzow, 1998, SIAM
J. Optim. 8, 850–869, for the semismooth reformulation of the variational inequality prob-
lem via the Fischer-Burmeister function, which is an irrational regular pseudo-smooth NCP
function, hold for the reformulation based on other regular pseudo-smooth NCP functions.
We propose a new regular pseudo-smooth NCP function, which is piecewise linear-rational
and metrically equivalent to the minimum NCP function. When it is used to the general-
ized Newton method for solving the variational inequality problem, an auxiliary step can be
added to each iteration to reduce the value of the merit function by adjusting the Lagrang-
ian multipliers only.
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1. Introduction

Consider the variational inequality problem VI(X,F ), which is to find a
vector x∗ ∈X such that for all x ∈X,

F(x∗)T (x−x∗)�0, (1.1)
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where X⊆�n is a closed set and F is a continuously differentiable function
from �n to �n. Suppose that X is defined by

X={x ∈�n :g(x)�0, h(x)=0}, (1.2)

where g and h are twice continuously differentiable functions from �n

to �p and �q , respectively. Let N = n+ p+ q. The Karush-Kuhn-Tucker
(KKT) system of VI(X,F ) is:

F(x)+
p∑

j=1

uj∇gj (x)+
q∑

j=1

vj∇hj (x)=0,

u�0, g(x)�0, uT g(x)=0, (1.3)

h(x)=0.

For ease of presentation, we will let zT = (xT , uT , vT ). The KKT sys-
tem plays a central role in the theory and algorithms for the variational
inequality problem and the constrained nonlinear programming problem in
the case that F =∇f for some f mapping from �n to � [22].

We may reformulate the KKT system (1.3) as a nonsmooth equation
problem H(z)= 0, via an nonlinear complementary problem (NCP) func-
tion. Let

N0 :={(a,0) :a�0}∪ {(0, b) :b�0}.

DEFINITION 1.1 NCP function. A function ψ :�2 →� is called an NCP
function if φ(a, b)=0 if and only if (a, b)∈N0.

Using an NCP function φ, we may reformulate the KKT system (1.3) to
a system of nonsmooth equations:

F(x)+
p∑

j=1

uj∇gj (x)+
q∑

j=1

vj∇hj (x)=0,

φ(uj ,−gj (x))=0, j =1, . . . , p, (1.4)

h(x)=0.

We may denote it as

H(z)=0, (1.5)
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where H maps from �N to �N . We use θ , defined by

θ(z)= 1
2
‖H(z)‖2,

to denote its norm function. For some NCP functions, θ can be continu-
ously differentiable. Assume that θ is continuously differentiable. Then we
say that z∗ is a stationary point of θ if ∇θ(z∗)=0.

The simplest NCP function is the minimum function φmin, defined by

φmin(a, b)=min{a, b}.

The minimum function is a piecewise linear function.
Another well-known NCP function is the Fischer-Burmeister function [12,

13], defined by

ψFB(a, b) :=a+b−
√
a2 +b2. (1.6)

This form of the Fischer-Burmeister function is the original form mul-
tiplied by −1. The Fischer-Burmeister NCP function is irrational and not
piecewise smooth.

Both the minimum function and the Fischer-Burmeister function are
strongly semismooth functions. Based upon this property, we may construct
generalized Newton methods for solving (1.4), which is locally quadrati-
cally convergent [21, 23, 27].

If we use the Fischer-Burmeister function, then the norm function θ is
continuously differentiable and the generalized Newton direction is a descent
direction of θ at zk [3, 17]. Based upon these nice properties of the Fischer-
Burmeister function, globally and superlinearly convergent algorithms have
been constructed for solving the NCP, with strong numerical evidence of the
efficiency of these algorithms [3, 4, 8–10, 14–30]. In particular, Ferris and
Munson [11] presented results for a 60 million variable problem.

The nice properties of the Fischer-Burmeister function are shared by
some other NCP functions. Qi [24] defined a class of NCP functions, called
regular pseudo-smooth NCP functions, and showed that they share the nice
properties of the Fischer-Burmeister function. Qi [24] also proposed to use
single-valued generalized derivative functions to replace set-valued B-sub-
differentials and Clarke’s generalized Jacobians, in solving pseudo-smooth
equations. For single-valued generalized derivatives, also see [1, 26].

The generalized Newton method was also proposed to solve the KKT
Equation (1.4). Facchinei et al. [5, 6] proposed to solve the KKT Equation
(1.4) for VI(X,F ), by generalized Newton methods or inexact Newton meth-
ods, via the Fischer-Burmeister function reformulation. Qi and Jiang [25]
discussed properties of the KKT Equation (1.4) based on both the minimum
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function and the Fischer-Burmeister function. Their discussion was for con-
strained nonlinear programs, but actually is also true for VI(X,F ). Facchinei
et al. [7] identified regularity properties of the KKT Equation (1.4) based on
the Fischer-Burmeister function.

However, the existing results of generalized Newton methods for solv-
ing the KKT Equation (1.4) are not very satisfactory. For example, a typi-
cal global convergence theorem claims that each accumulation point of the
iterates generated by the generalized Newton method is a stationary point
of the merit function θ . If the level sets of θ are bounded, then such an
accumulation point exists. What are conditions for boundedness of the level
sets of θ? No answer is available to this question in the literature.

The generalized Newton method for solving (1.4) is an infeasible method.
When θ tends to zero, in which way x and u will approach feasibility? Can
θ(z) provide a bound for such near feasibility of x and u?

The regularity properties of the KKT Equation (1.4) based on the Fischer-
Burmeister function, identified in [7], are very significant to convergence
analysis of generalized Newton methods. However, the Fischer-Burmeister
function is irrational. The Lagrangian multipliers ui are linear in the KKT
system (1.3), but become irrational in the KKT Equation (1.4) if the Fischer-
Burmeister function is used. Can we construct some NCP functions, which are
linear in a substantial part of the plane, yet have all the nice properties of the
Fischer-Burmeister function, when they are used in the KKT Equation (1.4)?

We try to answer these questions in this paper.
In Section 2, we show that if the NCP function φ is metrically equivalent

to the minimum function φmin, then the square root of θ(z) multiplying with
a constant will give a bound of near feasibility of x and u. In this case, we
give a sufficient condition for boundedness of the level sets of θ . We also
give a sufficient and necessary condition for boundedness of the level sets of
θ when φ=φmin or −φmin or |φmin| or −|φmin|. In Section 3, we briefly review
and slightly extend the definition of regular pseudo-smooth NCP functions,
introduced in [24], such that a nonsymmetric regular pseudo-smooth NCP
function can be proposed later. We show in Section 4 that all the nice proper-
ties of the Fischer-Burmeister function, when it is used in the KKT Equation
(1.4), hold for other regular pseudo-smooth NCP functions. Then, in Section
5, we propose a new regular pseudo-smooth NCP function, which is piece-
wise linear-rational. It is linear when |b|� |a|, and is equal to the minimum
function when b� |a|. When |b|< |a|, it is rational. We show that this new
NCP function is metrically equivalent to the minimum function. Generalized
Newton and Gauss-Newton methods for solving the KKT Equation (1.4)
are described in Section 6. In Section 7, we show that when the new NCP
function is used, an auxiliary step can be added to each iteration to reduce
the value of the merit function by adjusting the Lagrangian multipliers only.
This may speed the method and eventually fix the Lagrangian multipliers
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at zero for inactive constraints at the optimal solution which the iterates
converge to. As Conn et al. [2] noted: “In nonlinear optimization problems
with expensive function and gradient evaluations, it is desirable to extract
as much improvement as possible at each iteration of an algorithm. When
the objective function contains a subset of variables that occurs in a predict-
able function form, a second, computationally relatively inexpensive, update
can be applied to these variables following a classical optimization step. The
additional step provides a further reduction in the objective function and
can lead to superior optimization efficiency.” This justifies the introduction
of the new NCP function in Section 5 and the additional step in Section 7.
Some concluding remarks are drawn in Section 8.

2. Boundedness of Level Sets

DEFINITION 2.1 Metrical Equivalence. Suppose that φ is an NCP func-
tion. If there exist c1>0 and c2>0 such that for all (a, b)∈�2, we have

1
c1

|φmin(a, b)|� |φ(a, b)|� c2|φmin(a, b)|, (2.1)

then we say that φ is metrically equivalent to the minimum function φmin.

Tseng [29] established boundedness of the level sets of the norm function
of the semismooth reformulation of the strong monotone NCP problem via
the minimum function. He also proved the Fischer-Burmeister function is
metrically equivalent to the minimum function. For the NCP problem, (2.1)
plays a critical role to ensure boundedness of the level sets of the norm func-
tion, which in turn will guarantee that there exists an accumulation point of
the sequence generated by a descent method for solving the problem.

Let P :={1,2, . . . , p} and Q :={1,2, . . . , q}.
For any ε >0, let

Xε :={x ∈�n :gi(x)� c1ε, i ∈P ; |hi(x)|� ε, i ∈Q}
and

Zε :={z∈�N : θ(z)� 1
2
ε2}.

LEMMA 2.1. Let ε > 0. Suppose that φ is an NCP function which is met-
rically equivalent to the minimum function with c1 > 0 and c2 > 0 in (2.1).
Suppose that z∈Zε . Then we have

x ∈Xε, (2.2)
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∥∥∥∥∥∥
F(x)+

p∑

j=1

uj∇gj (x)+
q∑

j=1

vj∇hj (x)
∥∥∥∥∥∥

� ε, (2.3)

and for i ∈P , either

ui �−c1ε, and |gi(x)|� c1ε, (2.4)

or

|ui |� c1ε, and gi(x)� c1ε. (2.5)

Proof. Suppose that the assumptions of the theorem hold. Clearly, we
have

|hi(x)|� ε

for i ∈Q. By (2.1), for i ∈P , we have

∣∣min{ui,−gi(x)}
∣∣� c1ε.

It is easy to see that if ui�−gi(x), then (2.4) holds and if ui�−gi(x), then
(2.5) holds.

This also proves (2.2). It is obvious that (2.3) holds.

This shows that ε and c1ε give bounds of near feasibility of x and u. We
now discuss boundedness properties of Xε .

In general, even if X0 is bounded, Xε can be unbounded for arbitrarily
small ε>0. For example, let n=1, p=1, q=0 and g(x)=x(x+1)e−x . Then
X0 = [−1,0] is bounded, while Xε is unbounded for arbitrarily small ε >0.
However, when gi is convex for each i ∈P and hi is affine for each i ∈Q,
we have the following theorem.

THEOREM 2.1. If gi is convex for each i ∈P and hi is affine for each i ∈
Q, then Xε is bounded for any ε >0 as long as X0 is bounded.

Proof. This can be seen by the fact that in this case X0 and Xε for any
ε >0 have the same recession cone

{v∈�n :∇gi(x)T v�0,∀x ∈�n, i ∈P ;∇hi(x)T v=0,∀i ∈Q}.

See [28].
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We now discuss conditions for boundedness of Zε . For ε > 0, let X̄ε be
a subset of Xε such that for each x ∈ X̄ε , there exist u∈�p and v∈�q sat-
isfying (2.3), and for each i ∈P , either (2.4) and (2.5) holds.

For each x ∈ cl X̄ε , let

Aε(x)={i ∈P : |gi(x)|� c1ε}

and

Bε(x)=P \Aε(x).

DEFINITION 2.2 ε-Mangasarian-Fromovitz Condition. Let x ∈ cl X̄ε . We
say that the ε-Mangasarian-Fromovitz condition holds at x if there are no
nonnegative numbers αi, i∈Aε(x) and real numbers βi, i∈Q, where at least
one of αi and βi is nonzero, such that

∑

i∈Aε(x)
αi∇gi(x)+

∑

i∈Q
βi∇hi(x)=0.

THEOREM 2.2. Let ε > 0. Suppose that φ is an NCP function which is
metrically equivalent to the minimum function with c1>0 and c2>0 in (2.1).
If X̄ε is bounded and the ε-Mangasarian-Fromovitz condition holds at all x∈
clX̄ε , then Zε is bounded.

Proof. Assume that Zε is not bounded. Then there exist a sequence {zk ∈
Zε :k=1,2, . . . } such that ‖zk‖→∞. Let

zk =
⎛

⎝
xk

uk

vk

⎞

⎠ .

By Lemma 2.1, xk ∈ X̄ε . Since X̄ε is bounded, without loss of generality,
we may assume that xk →x∗ and x∗ ∈ cl X̄ε . Since ‖zk‖→∞,

∥∥∥∥

(
uk

vk

)∥∥∥∥→∞.

Without loss of generality, we may also assume that

(
uk

vk

)

∥∥∥
(
uk

vk

)∥∥∥
→

(
α

β

)
�=0,
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where α∈�p and β ∈�q . We now have
∥∥∥∥∥∥
F(xk)+

p∑

j=1

ukj∇gj (xk)+
q∑

j=1

vkj∇hj (xk)
∥∥∥∥∥∥

� ε.

Dividing

F(xk)+
p∑

j=1

ukj∇gj (xk)+
q∑

j=1

vkj∇hj (xk)

by
∥∥∥∥

(
uk

vk

)∥∥∥∥

and letting k→∞, we have

p∑

j=1

αj∇gj (x∗)+
q∑

j=1

βj∇hj (x∗)=0.

Since zk ∈Zε , by Lemma 2.1,

uki �−c1ε.

This implies that αi � 0 for all i ∈P . For i ∈Bε(x∗), we have i ∈Bε(xk)
for k big enough and

|uki |� c1ε.

Thus, αi =0 for i ∈Bε(x∗). We now have
∑

i∈Aε(x∗)

αi∇gi(x∗)+
∑

i∈Q
βi∇hi(x∗)=0,

all αi � 0, and not all αi and βi are zero. This contradicts the assumption
that the ε-Mangasarian-Fromovitz condition holds at x∗. Hence, Zε must
be bounded.

LEMMA 2.2. Let ε >0. Suppose that φ is an NCP function which is metri-
cally equivalent to the minimum function with c1 =c2 =1 in (2.1) i.e., φ=φmin

or −φmin or |φmin| or −|φmin|. If Zε is bounded, then X̄ε is compact and the
ε-Mangasarian-Fromovitz condition holds at all x ∈ X̄ε .
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Proof. In this case, it is easy to show that if Zε is bounded, then X̄ε is
bounded. Let {xk}⊂ X̄ε and xk→x∗. Then there are {uk} and {vk} such that
zk = ((xk)T , (uk)T , (vk)T )T ∈Zε . Since Zε is bounded, without loss of gener-
ality, we may assume that zk→z∗. It is easy to see that Zε is closed. Hence,
z∗ ∈Zε . Therefore, x∗ ∈ X̄ε . This shows that X̄ε is compact.

Assume that the ε-Mangasarian-Fromovitz condition does not hold at
one particular x∗ ∈ X̄ε . Then there are α∈�p and β∈�q such that not both
α and β are zero,

∑

i∈Aε(x∗)

αi∇gi(x∗)+
∑

i∈Q
βi∇hi(x∗)=0,

with αi =0 for i ∈Bε(x∗) and αi �0 for i ∈Aε(x∗). Since x∗ ∈ X̄ε , there will
be u∗ ∈�p and v∗ ∈�q such that

z∗ =
⎛

⎝
x∗

u∗

v∗

⎞

⎠∈Zε.

It is now not difficult to see that
⎛

⎝
x∗

u∗ + tα

v∗ + tβ

⎞

⎠∈Zε

for all t � 0. This contradicts the boundedness of Zε . Hence, the theorem
holds.

Combining Theorem 2.1 and Lemma 2.2, we have the following theorem.

THEOREM 2.3. Let ε > 0. Suppose that φ is an NCP function which is
metrically equivalent to the minimum function with c1 = c2 = 1 in (2.1) i.e.,
φ=φmin or −φmin or |φmin| or −|φmin|. Then Zε is bounded, if and only if X̄ε
is compact and the ε-Mangasarian-Fromovitz condition holds at all x ∈ X̄ε .

If Xε is bounded, then X̄ε is bounded. Theorem 2.1 gives a sufficient
condition for boundedness of Xε . A further question is: If X̄0 is bounded,
in what condition will X̄ε also be bounded when ε is small?

3. Regular Pseudo-Smooth NCP Functions

We use ‖ · ‖ to denote the 2-norm in this paper. Let T :�n→�m be a locally
Lipschitzian vector function. By Rademacher’s theorem, T is differentiable
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almost everywhere. Let �T denote the set of points where T is differentiable.
Then the B-subdifferential of T at x ∈�n is defined to be

∂BT (x)=
{

lim
xk→x

xk∈�T

∇T (xk)T
}
, (3.1)

while Clarke’s generalized Jacobian of T at x is defined to be

∂T (x)= conv∂BT (x), (3.2)

(see Qi [23]). T is called semismooth at x if T is directionally differentiable
at x and for all V ∈ ∂T (x+d) and d→0,

T ′(x;d)=V d+o(‖d‖); (3.3)

T is called strongly semismooth at x if T is semismooth at x and for all
V ∈ ∂T (x+d) and d→0,

T ′(x;d)=V d+O(‖d‖2); (3.4)

T is called a (strongly) semismooth function if it is (strongly) semismooth
everywhere. Here, O(‖d‖) stands for a vector function e :�n→�n, satisfy-
ing

lim
d→0

e(d)

‖d‖ =0,

while O(‖d‖2) stands for a vector function e :�n→�n, satisfying

‖e(d)‖�M‖d‖2

for all d satisfying ‖d‖� δ, and some M>0 and δ>0.
We first summarize the definitions of pseudo-smooth functions, general-

ized derivative functions and their properties, discussed in [24].

DEFINITION 3.1 Pseudo-smooth function. Let ψ : �2 → � be a strongly
semismooth function. Denote Pψ as the set of points where ψ takes zero.
Let Eψ be the extreme point set of Pψ . We say ψ is a pseudo-smooth func-
tion if it is smooth everywhere in �2 \Eψ .

For an NCP function φ, Eφ is a singleton, consisted by the origin only.
Let �̄2 :=�2 \ {(0,0)T }.

If for any (a, b) and k>0,

φ(ka, kb)=kφ(a, b),
then we say that φ is positively homogeneous.
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PROPOSITION 3.1. Suppose that φ : �2 → � is a continuous positively
homogeneous NCP function. Suppose that φ is smooth and piecewise twice
continuously differentiable (PC2) in �̄2, and Aφ ={∇φ(a, b)T : (a, b)∈�̄2} is
bounded. Then φ is a pseudo-smooth NCP function, and ∂Bφ(0,0)=Aφ.

We may use the generalized Newton method to solve (1.4). But it may
need some work to determine a matrix in ∂H(z) or ∂BH(z). To exploit
the structure of (1.4) and properties of a pseudo-smooth NCP function,
we may use the generalized derivative function for a pseudo-smooth NCP
function, which was introduced in [24]. Let φ :�2 →� be a pseudo-smooth
NCP function. We say that a function ξ :�2 →�2 is a generalized derivative
function of φ, if it satisfies

ξ(a, b)=∇φ(a, b) (3.5)

for (a, b) �= (0,0), and

ξ(0,0)T ∈ ∂Bψ(0,0). (3.6)

Let

L(z)=F(x)+
p∑

j=1

uj∇gj (x)+
q∑

j=1

vj∇hj (x)=0.

Then, the generalized derivative function G : �N → �N×N of H has the
following form:

G(z)=
⎛

⎝
∇xL(z) ∇g(x)T ∇h(x)T
−E(z)∇g(x) D(z) 0
∇h(x) 0 0

⎞

⎠ ,

where D(z) is a p×p diagonal matrix whose ith diagonal element is the
first element of ξ(ui,−gi(x)), and E(z) is a p×p diagonal matrix whose
ith diagonal element is the second element of ξ(ui,−gi(x)).

Consider the following generalized Newton method for solving H(z)=0:

zk+1 := zk +dk, (3.7)

where dk is a solution of

H(zk)+G(zk)dk =0. (3.8)



354 LIQUN QI

EXAMPLE 3.1. Let φ :�2 →� be the Fischer-Burmeister function, defined
by (1.6). Let

ξ(a, b) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
0
1

)
if a=b=0,

⎛

⎜⎜⎝
1− a√

a2 +b2

1− b√
a2 +b2

⎞

⎟⎟⎠ if (a, b)∈�̄2.

(3.9)

Then ξ is a generalized derivative function of the Fischer-Burmeister
function φFB .

Assume that H is defined by (1.4), and that G is a generalized derivative
function of H . The following two theorems and one proposition are simi-
lar to Theorem 3.1, Proposition 3.1 and Theorem 3.2 of [24] for the NCP
problem. Their proofs are also similar. Thus, we omit their proofs here.

THEOREM 3.1. 1
(i) Hj is continuously differentiable at z with ∇Hj(z) = Gj(z)

T , except
when j =n+ i, i ∈P and (ui,−gi(x))=0.

(ii) For any fixed z∈�N , we have

H(z+d)=H(z)+G(z+d)d+o(‖d‖) (3.10)

as d → 0. If furthermore ∇F , ∇2g and ∇2h are locally Lipschitz
around z, then we have

H(z+d)=H(z)+G(z+d)d+O(‖d‖2) (3.11)

as d→0.
(iii) The norm function θ is continuously differentiable in �N with

∇θ(z)T =H(z)TG(z) (3.12)

for all z∈�N .
(iv) If H(z) �=0 and

H(z)+G(z)d(z)=0

has a solution d(z), then the generalized Newton direction d(z) is a
descent direction of θ .

(v) If z∗ is a stationary point of θ and G(z∗) is nonsingular, then z∗ is a
solution of H(z)=0.



SEMISMOOTH REFORMULATIONS OF VARIATIONAL INEQUALITIES 355

PROPOSITION 3.2. Let z∗ ∈�N and A(z∗) be the set of all N×N matrices
W such that

W =
⎛

⎝
∇xL(z

∗) ∇g(x∗)T ∇h(x∗)T

−E∇g(x∗) D 0
∇h(x∗) 0 0

⎞

⎠ ,

where D is a p×p diagonal matrix whose ith diagonal element is the first
element of ξ(u∗

i ,−gi(x∗)), and E is a p×p diagonal matrix whose ith diag-
onal element is the second element of ξ(u∗

i ,−gi(x∗)). If all the matrices in
A(z∗) are nonsingular, then there are a positive number c and a neighbor-
hood N(z∗) of z∗ such that for all z∈N(z∗), G(z) is nonsingular and

‖G(z)−1‖� c.

We say that H is A-regular at z∗ if all the matrices in A(z∗) are nonsingu-
lar. Note that G(z∗) is only one element of A(z∗). Hence, this condition is
stronger than nonsingularity of G(z∗). Then, we have the following theorem
for quadratic convergence of the generalized Newton method (3.7)–(3.8).

THEOREM 3.2. If z∗ is a stationary point of θ and H is A-regular at z∗,
then z∗ is a solution of H(z)=0, the generalized Newton method (3.7)− (3.8)
is well-defined in a neighborhood of z∗ and the sequence {zk} converges to z∗

Q-superlinearly if z0 is in this neighborhood. If furthermore ∇F , ∇2g and ∇2h

are locally Lipschitz around z∗, then this convergence is Q-quadratic.

We then summarize the definition of a regular pseudo-smooth NCP
function and its properties, also discussed in [24].

Let

N+ :={(a, b) : (a, b)>0}

and

N− :=�2 \ (N+ ∪N0).

DEFINITION 3.2 Regular pseudo-smooth NCP function. Suppose that φ :
�2 → � is an NCP function, satisfying the conditions of Proposition 3.1,
i.e., φ is a continuous positively homogeneous NCP function, smooth and
PC2 in �̄2, and Aφ = {∇φ(a, b)T : (a, b) ∈ �̄2} is bounded. Then φ is a
pseudo-smooth NCP function, and ∂Bφ(0,0)=Aφ. We say that φ is a regu-
lar pseudo-smooth NCP function if φ also satisfies the following conditions:
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(i) φ(a, b)>0 for all (a, b)∈N+ and φ(a, b)<0 for all (a, b)∈N−;
(ii) ∇φ(a, b)�0 for all (a, b)∈�̄2;

(iii) ∇φ(a,0)= (0, α)T for all a>0, where α>0;
(iv) ∇φ(0, b)= (1,0)T for all b>0;
(v) the first element of ∇φ(a, b) is positive for all (a, b) not in the ray

of {(a,0) :a�0}.

In the original definition of the regular pseudo-smooth NCP function,
α = 1. In order to study some nonsymmetric NCP function, we do not
fix α=1. The Fischer-Burmeister function φFB is a regular pseudo-smooth
NCP function. Other regular pseudo-smooth NCP functions include the
(normalized) Tseng-Luo NCP function, the (normalized) Kanzow-Kleinmi-
chel NCP function, the ratio generated NCP function, etc [24]. All these
regular pseudo-smooth NCP functions are symmetric, i.e., φ(a, b)≡φ(b, a).

4. Nonsingularity Conditions

DEFINITION 4.1 Partially positive definiteness condition and linear inde-
pendence condition. Suppose that zT = (xT , uT , vT )∈�N . Let P ={1, · · ·, p},

I (z)={j : j ∈P,gj (x)=0, uj �0},

I0(z)={j ∈ I (z) :uj =0},

I1(z)={j ∈ I (z) :uj >0}

and

G(z)={d ∈�n :∇gj (x)T d=0 for j ∈ I1(z),∇h(x)T d=0}.

The KKT system (1.3) is said to satisfy the partially positive definiteness
condition at a point z∈�N if dT∇xL(z)d >0 for all d ∈G(z)\{0}.The KKT
system (1.3) is said to satisfy the linear independence condition at a point
z∈�N if {∇gj (x), j ∈ I (z),∇hj (x), j =1, . . . , q} are linearly independent.

THEOREM 4.1. Let φ in (1.4) be relaxed to be any regular pseudo-smooth
NCP function satisfying Definition 3.2. If the KKT system (1.3) satisfies the
partially positive definiteness condition and the linear independence condition
at a point z∈�N , then H , defined by (1.4) is A-regular at z.
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Proof. By the definition of A-regularity of H , it suffices to show that any
N ×N matrix W , with the form

W =
⎛

⎝
∇xL(z) ∇g(x)T ∇h(x)T

−E∇g(x) D 0
∇h(x) 0 0

⎞

⎠ ,

is nonsingular, where D=diag{α1, . . . , αp}, E=diag{β1, . . . , βp},
(
αj

βj

)
=∇φ(uj ,−gj (x))

if (uj ,−gj (x)) �=0, and

(
αj

βj

)
∈Aφ

if (uj ,−gj (x))=0. By Definition 3.2,

(
αj

βj

)
�0 (4.1)

and
(
αj

βj

)
�=0. (4.2)

Suppose that

W

⎛

⎝
d1

d2

d3

⎞

⎠=0, (4.3)

where d1 ∈�n, d2 ∈�p, d3 ∈�q . Use d2j to denote components of d2. Then
(4.3) implies

∇xL(z)d1 +∇g(x)T d2 +∇h(x)T d3 =0, (4.4)

−βj∇gj (x)d1 +αjd2j =0 (4.5)

for j ∈P and

∇h(x)d1 =0. (4.6)
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Let P1 ={j ∈P,αj >0, βj >0}, P2 ={j ∈P,βj =0} and P3 ={j ∈P,αj =0}.
Then I1(z)⊆P3. By (4.5), (4.1) and (4.2), d2j =0 if j ∈P2,

∇gj (x)d1 =0 (4.7)

if j ∈P3 and

∇gj (x)d1 =νjd2j (4.8)

where νj = αj
βj
>0 if j ∈P1. Multiplying (4.4) by dT1 , by (4.6), (4.7) and (4.8),

dT1 ∇xL(z)d1 +
∑

j∈P1

νjd
2
2j =0.

Since I1(z)⊆P3, by (4.6) and (4.7), d1 ∈G(z). Since νj >0 for j ∈P1, by
the partially positive definiteness condition, d1 = 0 and d2j = 0 for j ∈P1.
Now (4.4) yields

∑

j∈P3

∇gj (x)T d2j +∇h(x)T d3 =0.

Note that P3 ⊆ I (z). By the linear independence condition, d3 = 0 and
d2j = 0 for j ∈P3. Hence, d= 0. This shows that W is nonsingular. There-
fore, H is A-regular at z. This completes the proof.

Remark 4.1. Note that z can be any point in �N . Thus, if the KKT sys-
tem (1.3) satisfies the partially positiveness condition and the linear inde-
pendence condition at zk, the Equation (3.8) is solvable. The result in the
special case that φ is the Fischer-Burmeister function was established by
Facchine et al. [7], in a slightly different form. They established some more
general results in that special case. We do not go to that detail. In the
nonlinear programming case, if z is a solution of the KKT system (1.3),
then the partially positive definiteness condition becomes the strong sec-
ond-order sufficiency condition.

5. A New Regular Pseudo-Smooth NCP Function

We now present a new NCP function φ :�2 →�, defined by

φ(a, b)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a if b� |a|,
2b− b2

a
if a� |b| and a>0,

2a+2b+ b2

a
if a�−|b| and a<0,

a+4b if b�−|a|.
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Then

∇φ(a, b)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
0

)
if b� |a| and b>0,

(
b2

a2

2− 2b
a

)
if a� |b| and a>0,

(
2− b2

a2

2+ 2b
a

)
if a�−|b| and a<0,

(
1
4

)
if b�−|a| and b<0,

.

and

Aφ = ∂Bφ(0,0)=
{(

t2

2−2t

)
: |t |�1

}⋃{(
2− t2
2−2t

)
: |t |�1

}
.

By Definitions 1.1 and 3.2, as well as Proposition 3.1, we see that the fol-
lowing theorem holds.

THEOREM 5.1. φ is a regular pseudo-smooth NCP function in the extended
sense with α=2.

For our new NCP function, we also have the following theorem.

THEOREM 5.2. φ is metrically equivalent to the minimum function with
c1 =1 and c2 =5, i.e., for all (a, b)∈�2, we have

|φmin(a, b)|� |φ(a, b)|�5|φmin(a, b)|. (5.1)

Proof. For b� |a|, we have

φ(a, b)=φmin(a, b)=a.

For a�−|b| and a<0, we have φmin(a, b)=a and |b|� |a|. Thus,

|φ(a, b)|�5|a|=5|φmin(a, b)|

and

|φ(a, b)|�2|a|−2|b|+
∣∣∣∣
b2

a

∣∣∣∣=|a| ·
∣∣∣∣∣2−2

∣∣∣∣
b

a

∣∣∣∣+
∣∣∣∣
b

a

∣∣∣∣
2
∣∣∣∣∣� |a|= |φmin(a, b)|.
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For a� |b| and a>0, we have φmin(a, b)=b and |b|� |a|. Thus,

|φ(a, b)|�3|b|=3|φmin(a, b)|

and

|φ(a, b)|�2|b|−
∣∣∣∣
b2

a

∣∣∣∣� |b|= |φmin(a, b)|.

For b�−|a|, we have φmin(a, b)=b and |b|� |a|. Thus,

|φ(a, b)|�5|b|=5|φmin(a, b)|

and

|φ(a, b)|�4|b|− |a|�3|b|� |φmin(a, b)|.

Putting the four cases together, we have (5.1).

6. Generalized Damped Newton and Gauss-Newton Methods for Solving
KKT Equations

We may solve (1.5) by the following generalized damped Newton method.

ALGORITHM 1 (Generalized Damped Newton Method).

Step 1. Let z0 ∈�N, σ, ρ ∈ (0,1), η>0, p>2 and k=0.
Step 2. If H(zk)=0, stop. Otherwise, let dk be a solution of

H(zk)+G(zk)d=0. (6.1)

If (6.1) is not solvable, or if ∇θ(zk)T dk >−η‖dk‖p, set dk =−∇θ(zk).
Step 3. If

θ(zk +dk)�σθ(zk),

set z̄k = zk +dk and go to Step 6.
Step 4. Let αk =ρjk , where jk is the smallest nonnegative integer j such

that

θ(zk +ρjdk)− θ(zk)�σρj∇θ(zk)T dk,

where ρj means the j th power of ρ.
Step 5. Let z̄k = zk +αkdk. Go to Step 6.
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Step 6. Let zk+1 = z̄k and k=k+1. Go to Step 2.
This algorithm is a generalization of Algorithm 1 of [24] for the NCP

problem. By a similar argument, we may have the following convergence
theorem.

THEOREM 6.1. Assume that z∗ is an accumulation point of {zk} generated
by Algorithm 1. Then z∗ is a stationary point of θ . If G(z∗) is nonsingular,
then z∗ is a solution of H(z)=0. If H is A-regular at z∗, then {zk} converges
to z∗ Q-superlinearly. If furthermore ∇F , ∇2g and ∇2h are locally Lipschitz
around z∗, then this convergence is Q-quadratic.

We may also use the Gauss-Newton technique. The following is a gener-
alized damped Gauss-Newton method, which is a generalization of Algo-
rithm 2 in [24] for the NCP problem.

ALGORITHM 2 (Generalized Damped Gauss-Newton Method).

Step 1. Let z0 ∈�N, σ ∈ (0, 1
2), ρ ∈ (0,1), β0>0, k=0.

Step 2. If G(zk)T H(zk)=0, stop. Otherwise, let dk be a solution of

G(zk)T H(zk)+ [G(zk)TG(zk)+βkI ]d=0.

Step 3. Let αk =ρjk , where jk is the smallest nonnegative integer j such
that

θ(zk +ρjdk)− θ(zk)�σρj∇θ(zk)T dk,
where ρj means the j th power of ρ.
Step 4. Choose βk+1>0. Let z̄k = zk +αkdk.
Step 5. Let zk+1 = z̄k and k :=k+1. Go to Step 2.
Similar to Theorem 7.2 of [24], we have the following global and qua-

dratic convergence theorem for this algorithm.

THEOREM 6.2. Let βk = min{θ(zk),‖∇θ(zk)‖} in Algorithm 2. Then Algo-
rithm 2 is well-defined. Assume that z∗ is an accumulation point of {zk}
generated by Algorithm 2. If H is A-regular at z∗, then z∗ is a solu-
tion of H(z)= 0, and {zk} converges to z∗ Q-superlinearly. If furthermore
∇F , ∇2g and ∇2h are locally Lipschitz around z∗, then this convergence is
Q-quadratic.

7. An Additional Step

We may change Step 6 in Algorithm 1 and Step 5 of Algorithm 2 as follows.
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Suppose that z̄k is given. First we may reduce the value of θ with respect
to vi by fixing other variables in z at z̄k. This can be done when φ is a gen-
eral regular pseudo-smooth NCP function. We may do it for i= 1, . . . , p,
sequentially. For each i, this turns out to reduce the value of a convex qua-
dratic polynomial

1
2
‖∇hi(x̄k)‖2v2

i +∇hi(x̄k)T
⎡

⎢⎣F(x̄k)+
p∑

j=1

ūkj∇gj (x̄k)+
q∑

j=1
j �=i

v̄kj∇hj (x̄k)

⎤

⎥⎦vi.

Thus, if ∇hi(x̄k) �=0, we may replace v̄ki in z̄k with

v̄ki =
−∇hi(x̄k)T

[
F(x̄k)+∑p

j=1 ū
k
j∇gj (x̄k)+

∑q
j=1
j �=i
v̄kj∇hj (x̄k)

]

‖∇hi(x̄k)‖2
, (7.1)

for i=1, . . . , p, sequentially. In this way we obtain a new z̄k with a reduced
value of θ . We may minimize θ with respect to the vector v. But this
implies that we need to solve a system of linear equations. It is not worth
doing that as we only wish to use minor efforts as (7.1) to reduce θ .

We now assume that φ is the new NCP function introduced in Section
5. Since φ is linear in half of the plane, we may also reduce the value of θ
with respect to ui if i ∈ I1 or i ∈ I2. Here,

I1 ={i :−gi(x̄k)� |ūki |>0}
and

I2 ={i :gi(x̄k)� |ūki |, gi(x̄k)>0}
I1 does not include the case gi(x̄k)<0 and uki =0 as this case is a standard
ith part of the solution of the KKT system, thus we do not want to update
ui in this case.

For i∈I1, we may reduce the value of θ with respect to ui by fixing other
variables in z at z̄k, subject to the constraint

−gi(x̄k)� |ui |. (7.2)

This turns out to reduce the value of a uniformly convex quadratic
polynomial

1
2

[
1+‖∇gi(x̄k)‖2]u2

i+∇gi(x̄k)T
⎡

⎢⎣F(x̄k)+
p∑

j=1
j �=i

ūkj∇gj (x̄k)+
q∑

j=1

v̄kj∇hj (x̄k)

⎤

⎥⎦ui,
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over the constraint (7.2). If

1
2

[
1+‖∇gi(x̄k)‖2] (ūki )2 +∇gi(x̄k)T

×

⎡

⎢⎣F(x̄k)+
p∑

j=1
j �=i

ūkj∇gj (x̄k)+
q∑

j=1

v̄kj∇hj (x̄k)

⎤

⎥⎦ ūki �0, (7.3)

then we simply replace ūki in z̄k with

ūki =0. (7.4)

This means that we fix ui = 0 in this case. This will eventually fix the
Lagrangian multipliers at zero for inactive constraints at the optimal solu-
tion which the iterates converge to.

Otherwise, let

ûki =
−∇gi(x̄k)T

[
F(x̄k)+∑p

j=1
j �=i
ūkj∇gj (x̄k)+

∑q

j=1 v̄
k
j∇hj (x̄k)

]

1+‖∇gi(x̄k)‖2
. (7.5)

Thus, we may replace ūki in z̄k with

ūki =
⎧
⎨

⎩

gi(x̄
k) if ûki <gi(x̄

k),

ûki if gi(x̄k)� ûki �−gi(x̄k),
−gi(x̄k) if ûki >−gi(x̄k).

(7.6)

We may use (7.4) or (7.6) to update ūki , depending upon if (7.3) holds or
not, for i ∈ I1 sequentially.

We may deal with ui for i∈I2 similarly, though we do not try to fix ui =
0, as gi(x̄k)>0 means infeasibility.

For i∈I2, we may reduce the value of θ with respect to ui by fixing other
variables in z at z̄k, subject to the constraint

gi(x̄
k)� |ui |. (7.7)

This turns out to reduce the value of a uniformly convex quadratic
polynomial

1
2

[
1+‖∇gi(x̄k)‖2]u2

i +

⎧
⎪⎨

⎪⎩
−4gi(x̄k)+∇gi(x̄k)T

⎡

⎢⎣F(x̄k)+
p∑

j=1
j �=i

ūkj∇gj (x̄k)+
q∑

j=1

v̄kj∇hj (x̄k)

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
ui,
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over the constraint (7.7). Let

ûki =
4gi(x̄k)−∇gi(x̄k)T

[
F(x̄k)+∑p

j=1
j �=i
ūkj∇gj (x̄k)+

∑q

j=1 v̄
k
j∇hj (x̄k)

]

1+‖∇gi(x̄k)‖2
.

Thus, we may replace ūki in z̄k with

ūki =
⎧
⎨

⎩

−gi(x̄k) if ûki <−gi(x̄k),
ûki if −gi(x̄k)� ûki �gi(x̄k),
gi(x̄

k) if ûki >gi(x̄
k),

(7.8)

for i ∈ I2 sequentially.
Thus, we may update vi sequentially by (7.1) for i=1, . . . , q, ui sequen-

tially by (7.4) or (7.6) for i∈ I1, and by (7.8) for i∈ I2. This will reduce the
value of θ with minor calculations. The updating on ui are based upon the
partially linearity of φ. Then we can let zk+1 = z̄k, k :=k+1 and go to Step
2 in Algorithms 1 and 2.

Remark 7.1. For i ∈ I1, using (7.6) to update ūki will not change the sign
of ūki . In this case, (7.3) does not hold. Thus,

∇gi(x̄k)T
⎡

⎢⎣F(x̄k)+
p∑

j=1
j �=i

ūkj∇gj (x̄k)+
q∑

j=1

v̄kj∇hj (x̄k)

⎤

⎥⎦ ūki <0,

i.e., the signs of

∇gi(x̄k)T
⎡

⎢⎣F(x̄k)+
p∑

j=1
j �=i

ūkj∇gj (x̄k)+
q∑

j=1

v̄kj∇hj (x̄k)

⎤

⎥⎦

and the original ūki are different. By (7.5), this implies that ûki and the original
ūki have the same sign. By (7.6), this updating will not change the sign of ūki .

8. Concluding Remarks

In this paper, we give a sufficient condition for boundedness of the level sets
of the norm function of the semismooth reformulation of the KKT system of
the variational inequality problem, when the NCP function used in the refor-
mulation is metrically equivalent to the minimum function; and a sufficient
and necessary condition when the NCP function is the minimum function.
We show that nonsingularity properties identified by Facchinei, et al. [7] for
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the semismooth reformulation of the variational inequality problem via the
Fischer-Burmeister function, which is an irrational regular pseudo-smooth
NCP function, hold for the reformulation based on other regular pseudo-
smooth NCP functions. We then propose a new regular pseudo-smooth NCP
function, which is piecewise linear-rational and metrically equivalent to the
minimum NCP function. When it is used to the generalized Newton method
for solving the variational inequality problem, an auxiliary step can be added
to each iteration to reduce the value of the merit function by adjusting the
Lagrangian multipliers only.

Acknowledgements

The author is thankful to Paul Tseng and Terry Rockafellar for the
discussion on boundedness of Xε , and to Yufei Yang for his comments on
Section 4.

References

1. Chen X., Nashed, Z. and Qi, L. (2000), Smoothing methods and semismooth methods
for nondifferentiable operator equations, SIAM J. Numer. Anal. 38, 1200–1216.

2. Conn, A.R., Vicente, L.N. and Visweswariah, C. (1999), Two-step algorithms for non-
linear optimization with structure applications, SIAM J. Optim. 9, 924–947.

3. De Luca, T., Facchinei, F. and Kanzow, C. (1996), A semismooth equation approach to
the solution of nonlinear complementarity problems, Math. Prog. 75, 407–439.

4. De Luca, T., Facchinei, F. and Kanzow, C. (2000), A theoretical and numerical com-
parison of some semismooth algorithms for complementarity problems, Comput. Optim.
Appl. 16, 173–205.

5. Facchinei, F. Fischer, A. and Kanzow, C. (1995), A Semismooth Newton Method for
Variational Inequalities: Theoretical Results and Preliminary Numerical Results, Tech-
nical Report 102, Institute of Applied Mathematics, University of Hamburg, Hamburg,
Germany.

6. Facchinei, F., Fischer, A. and Kanzow, C. (1996), Inexact Newton methods for semi-
smooth equations with applications to variational inequality problems, In: Di Pillo, G.
and Giannessi, F. (eds.), Nonlinear Optimization and Applications, Plenum Press, New
York, pp. 125–139.

7. Facchinei, F., Fischer, A. and Kanzow, C. (1998), Regularity properties of a semismooth
reformulation of variational inequalities, SIAM J. Optim. 8, 850–869.

8. Facchinei, F. and Kanzow, C. (1997), A nonsmooth inexact Newton method for the
solution of large-scale nonlinear complementarity problems, Math. Prog. 76, 493–512.

9. Facchinei, F. and Pang, J.S. (2003), Finite-Dimensional Variational Inequalities and Com-
plementarity Problems, I-II, Springer-Verlag, New York.

10. Facchinei, F. and Soares, J. (1997), A new merit function for nonlinear complementarity
problems and a related algorithm, SIAM J. Optim. 7, 225–247.

11. Ferris, M.C. and Munson, T.S. (2000), Semismooth support vector machines, Data Min-
ing Institute Technical Report 00-09, Computer Sciences Department, University of Wis-
consin, Madison, Wisconsin.



366 LIQUN QI

12. Fischer, A. (1992), A special Newton-type optimization method, Optimization 24, 269–
284.

13. Fischer, A. (1995), An NCP-function and its use for the solution of complementarity
problems, In: Du, D, Qi, L. and Womersley, R. (eds.), Recent Advances in Nonsmooth
Optimization, World Scientific Publishers, New Jersey, pp. 88–105.

14. Fischer, A. (1997), Solution of monotone complementarity problems with locally Lips-
chitzian functions, Math. Prog. 76, 513–532.

15. Jiang, H. (1999), Global convergence analysis of the generalized Newton and Gauss-
Newton methods of the Fischer-Burmeister equation for the complementarity problem,
Math. Oper. Res. 24, 529–543.

16. Jiang, H., Fukushima, M., Qi, L. and Sun, D. (1998), A trust region method for solving
generalized complementarity problems, SIAM J. Optim. 8, 140–157.

17. Jiang, H. and Qi, L. (1997), A new nonsmooth equations approach to nonlinear com-
plementarity problems, SIAM J. Control Optim. 35, 178–193.

18. Jiang, H., Qi, L., Chen, X. and Sun, D. (1996), Semismoothness and superlinear con-
vergence in nonsmooth optimization and nonsmooth equations, In: Di Pillo, G. and
Giannessi, F. (eds.), Nonlinear Optimization and Applications, Plenum Press, New York,
197–212.

19. Jiang, H. and Ralph, D. (1999), Global and local superlinear convergence analysis of
Newton-type methods for semismooth equations with smooth least squares, In: Fuku-
shima, M. and Qi, L. (eds.), Reformulation – Nonsmooth, Piecewise Smooth, Semismooth
and Smoothing Methods, Kluwer Academic Publishers, Nowell, MA, pp. 181–210.

20. Munson, T.S., Facchinei, F., Ferris, M.C., Fischer, A. and Kanzow, C. (2001), The semi-
smooth algorithm for large scale complementarity problems, INFORMS J. Comput. 13,
294–311.

21. Pang, J.S. and Qi, L. (1993), Nonsmooth equations: Motivation and algorithms, SIAM
J. Optim. 3, 443–465.

22. Qi, H., Qi, L. and Sun, D. (2004), Solving KKT systems via the trust region and the
conjugate gradient methods, SIAM J. on Optim. 14, 439–463.

23. Qi, L. (1993), Convergence analysis of some algorithms for solving nonsmooth equa-
tions, Math. Oper. Res. 18, 227–244.

24. Qi, L. (1999), Regular pseudo-smooth NCP and BVIP functions and globally and qua-
dratically convergent generalized Newton methods for complementarity and variational
inequality problems, Math. Oper. Res. 24, 440–471.

25. Qi, L. and Jiang, H. (1997), Semismooth Karush-Kuhn-Tucker equations and conver-
gence analysis of Newton methods and quasi-Newton methods for solving these equa-
tions, Math. Oper. Res. 22, 301–325.

26. Qi, L., Ralph, D. and Zhou, G. (2000), Semiderivative functions and reformulation
methods for solving complementarity and variational inequality problems, In: Di Pillo,
G. and Giannessi, F. (eds.), Nonlinear Optimization and Related Topics, Kluwer Aca-
demic Publisher, Nowell, MA, 317–350.

27. Qi, L. and Sun, J. (1993), A nonsmooth version of Newton’s method, Math. Prog. 58,
353–368.

28. Rockafellar, R.T. (1970), Convex Analysis. Princeton, NJ.
29. Tseng, P. (1996), Global behaviour of a class of merit functions for the nonlinear com-

plementarity problem, J. Optim. Theory Appl. 89, 17–37.
30. Yamashita, N. and Fukushima, M. (1997), Modified Newton methods for solving semi-

smooth reformulations of monotone complementarity problems, Math. Prog. 76, 469–491.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


